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1 Rationality and positivity
This section provides an outline of the proof of the two main mathematical results required for
the paper: the rationality of the phospho-forms at steady state (Paper Equation 1) and the posi-
tivity of the rational functions. The key concepts are defined and the results stated in sufficient
detail that an expert should be able to reconstruct the argument in full. Complete details of the
proofs will appear elsewhere [35].

1.1 The network of reactions
Paper Figure 1 used a notation for phospho-forms in which the subscript is a bit string, indicat-
ing which sites are phosphorylated. It will be more convenient here to index the 2n phospho-
forms by an integer. Let index i correspond to the n-bit string given by the expansion of i
modulo 2, padded with leading zeros as required, so that i lies in the range [0, 2n− 1]. It will be
helpful to let N = 2n − 1. S0 now corresponds to the unphosphorylated phospho-form and SN

to the fully phosphorylated phospho-form. For n = 3 the 8 phospho-forms in Paper Figure 1
are encoded as follows:

S0 ≡ S000, S1 ≡ S001, S2 ≡ S010, S3 ≡ S011, S4 ≡ S100, 5 ≡ S101, S6 ≡ S110, S7 ≡ S111 .

Let [i] ⊆ {1, · · · , n} denote the set of bit positions (counting from the right, starting from 1 and
going up to n) at which the bit string of i has a 1, corresponding to the presence of a phosphate.
Let i → j indicate that there is a reaction having Si as substrate and Sj as product. This
happens only if, either [i] ⊆ [j], in which case phosphates are gained and it is a kinase reaction,
or [j] ⊆ [i], in which case phosphates are lost and it is a phosphatase reaction. Note that
some reactions, like 3 → 5, are ruled out. The notation allows for both distributive reactions,
in which exactly one phosphate is gained or lost (Paper Figure 1a) and processive reactions,
in which more than one phosphate is gained or lost (Paper Figure 1b). It will sometimes be
convenient to confirm that a reaction is a kinase or a phosphatase reaction by using the extra
annotation i

X→ j, where X = E or X = F , respectively.
It could be, for some specific kinase, phosphatase, substrate system, that certain phospho-

forms do not appear. In this case, we assume that they are not present in the model and the value
of N is modified accordingly (see Example 1 in §1.7). The assertion i → j carries with it the
assumption that the parameters arising from the underlying biochemistry (Paper Figure 1c) are
all positive:

aX
i , bX

i , cX
i,j > 0 .

The set of assertions i → j defines a directed graph on the set of phospho-forms, which sum-
marises the network of biochemical reactions of the particular multisite phosphorylation system
being studied. For the main results of the paper, we assume a nonsequential system with n sites,
as illustrated in Paper Figure 1 for n = 3. All 2n phospho-forms are assumed to appear and the
kinase and phosphatase are assumed to act at least distributively (Paper Figure 1a). The kinase
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and phosphatase can also act with arbitrary amounts of processivity (Paper Figure 1b). We also
use two other examples for specific calculations, as described in §1.7.

1.2 The differential equations
We can now rewrite the model equations (Paper Figure 1d) using this new notation.

dSi

dt
=

∑
X=E,F

{bX
i XSi − aX

i X.Si +
∑
k

X→i

cX
k,iXSk} (1)

dXSi

dt
= aX

i X.Si − (bX
i +

∑
i
X→j

cX
i,j)XSi (2)

dX

dt
=

∑
i

∃j, i
X→j

{−aX
i X.Si + (bX

i +
∑
i
X→j

cX
i,j)XSi} (3)

Equation (2) summarises both the case X = E, for which 0 ≤ i < N (because there is
no enzyme-substrate complex ESN ), and the case X = F , for which 0 < i ≤ N (because
there is no enzyme-substrate complex FS0). In (3), the restriction ∃j, i

X→ j is necessary to
avoid including in the sum these same non-existent enzyme-substrate complexes. With the new
notation, this can be made clearer by separating (3) into its two constituent equations, which
have different summation ranges.

dE

dt
=

N−1∑
i=0

{−aE
i E.Si + (bE

i +
∑
i

E→j

cE
i,j)ESi} (4)

dF

dt
=

N∑
i=1

{−aF
i F.Si + (bF

i +
∑
i

F→j

cF
i,j)FSi} (5)

1.3 Parameter algebra over R(a)

If equation (2) is considered at steady state, so that dXSi/dt = 0, it is easy to see that

XSi =
X.Si

KX
i

, (6)

provided a generalised Michaelis-Menten constant, KX
i , is defined by

KX
i =

bX
i +

∑
i
X→j

cX
i,j

aX
i

. (7)
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Let a1, · · · , am be a list of the parameters in the model. These consist of the various site-specific
rate constants, aX

i , bX
i , cX

i,j , for X = E, 0 ≤ i < N and X = F , 0 < i ≤ N , in some order.
It will be necessary to form algebraic expressions involving the parameters, as in (7). These
expressions will be either polynomials or rational functions, with real coefficients. (For more
information on the material in this section, see, for instance, [22].) Polynomials are expressions
formed by addition, subtraction and multiplication but not division. Formally, a monomial in
the parameters a1, · · · , am is an expression of the form

aα1
1 aα2

2 · · · aαm
m (8)

where the degrees α1, · · · , αm are all nonnegative. For instance, a2
1a3 is a monomial but a−2

2 is
not. The monomial (8) can be abbreviated to aα. A polynomial in the parameters is then a finite
sum of monomials with real coefficients: ∑

α

cαaα ,

with cα ∈ R. The collection of all polynomials in the parameters, denoted R[a1, · · · , am], will
usually be abbreviated to R[a]. It is a commutative ring under the operations of polynomial ad-
dition and multiplication. Finally, a rational function in the parameters is any expression formed
by addition, subtraction, multiplication and division. The collection of all rational functions in
the parameters will be denoted R(a). (We used R(~a) in the paper but we drop this vector notation
here to reduce symbol cluttering.) Note that any u ∈ R(a) can always be expressed as a fraction
in the form u = p/q where p, q ∈ R[a]; p is the numerator of u, while q is its denominator. For
instance, KX

i ∈ R(a); as expressed in (7), its denominator is aX
i .

R(a) is a field under the operations of addition and multiplication of fractions. For many
purposes it is as good a field as that of the real numbers, R. Working over R(a) allows the pa-
rameters to be treated as uninterpreted symbols, enabling us to do calculations without knowing
the parameter values in advance.

1.4 The phospho-form matrix Q

Equation (6) shows that the enzyme-substrate complexes are determined by the phospho-forms
and the free enzymes. It is now possible to substitute for XSi in terms of X and Si in equation
(1) to obtain at steady state

−


∑i

E→j
cE
i,j

KE
i

E +

∑i
F→j

cF
i,j

KF
i

F

Si +

∑
j

E→i

cE
j,i

KE
j

E.Sj +

∑
l

F→i

cF
l,i

KF
l

F.Sl = 0 . (9)

There are 2n equations summarised here, with 0 ≤ i ≤ N . Note that the parameters appear
only in the form of catalytic efficiencies: ratios of catalytic constants to generalised Michaelis-
Menten constants. Let κ1, · · · , κm′ be all the catalytic efficiencies that appear in (9). It will be
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convenient for technical reasons to sometimes work over the polynomial ring R[κ1, · · · , κm′ ] =
R[κ] and the corresponding field of rational functions, R(κ), in preference to R[a] and R(a).

At steady state, F 6= 0, for otherwise equation (18) shows that Ftot = 0, which we may
reasonably assume not to be the case. Hence, we may multiply equation (9) through by 1/F to
rewrite it in the form

N∑
j=0

pi,j(t)Sj = 0

where pi,j(t) is a polynomial in t = E/F (in fact, at most a linear polynomial) whose coeffi-
cients are polynomial functions in the catalytic efficiencies. In other words, pi,j(t) ∈ R[κ, t].
Let Q be the (N + 1)× (N + 1) matrix (ie: the 2n × 2n matrix) with entries in R[κ, t], given by
Qi,j = pi,j(t). If σ denotes the row vector of phospho-forms at steady state, σ = (S0, · · · , SN),
then, evidently, Q.σT = 0. This is the basic equation satisfied by the steady state phospho-
forms. Note that the nonlinear equations (1) have become linearised by working over R[κ, t].

1.5 S-positivity
As is evident from (9), the entries in Q have distinctive signs, but this needs to be appropriately
formalised. A polynomial p ∈ R[a] (or any other polynomial ring like R[κ]) is said to be s-
positive (“sum positive”) if it is a sum of positive monomials: p =

∑
α cαaα where p 6= 0 and

cα > 0 whenever cα 6= 0. It is s-negative if p = −q where q is s-positive. Although there
is no corresponding order relation, and we use a different name to avoid drawing unwarranted
conclusions, s-positivity shares many properties in common with positivity of numbers. For
instance, the sum and product of s-positive polynomials are both s-positive. S-positivity can
also be seen as a generalisation of positivity, which corresponds to the special case where there
are no polynomial variables. Note that it follows from the form of the catalytic efficiencies
appearing in (9) that if p ∈ R[κ] is s-positive, then it is also s-positive when rewritten as an
element of R[a].

Considered as a matrix over R[κ, t], the diagonal terms of Q are all s-negative and if an off-
diagonal term of Q is non-zero, then it is s-positive. In other words, if − denotes an s-negative
expression and ∗ denotes an expression which is either zero or s-positive, then Q looks like

− ∗ · · · ∗ ∗
∗ − · · · ∗ ∗
...

...
...

...
...

∗ ∗ · · · − ∗
∗ ∗ · · · ∗ −

 (10)

It is convenient to extend s-positivity from polynomials to rational functions in the obvious
way. A rational function f ∈ R(a) is said to be s-positive if f can be expressed as a fraction
f = p/q where p, q,∈ R[a] are both s-positive. As before, f is s-negative if f = −g where g is
s-positive.
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1.6 Rationality of phospho-forms
The rationality of the steady state phospho-forms, together with an algorithm for determining
the rational functions, begins with the following observation.

Lemma 1 If 1 = (1, · · · , 1) is the all-ones row vector, then 1.Q = 0 and Q has rank N (ie: one
less than full rank) over R(κ, t).

Recall that the process of Gaussian elimination uses a sequence of elementary row operations
to transform a r×r matrix, M , into upper-triangular block form. The k-th stage of this, denoted
M(k), brings M into the block form (

A B
0 D

)
where A is a k × k upper triangular matrix whose diagonal elements are either 1 or 0 and the
lower left block is a (r − k) × k zero matrix. If this process is undertaken on Q over the field
R(κ, t) then it can be shown using Lemma 1 and Lemma 3 below that none of the pivots on the
diagonal are zero until Q(N + 1) is reached. It follows that

Q(N + 1) =



1 0 · · · 0 −ρ0(t)
0 1 · · · 0 −ρ1(t)
...

...
...

...
...

0 0 · · · 1 −ρN−1(t)
0 0 · · · 0 0

 (11)

where ρi(t) ∈ R(κ, t). Since Q(N + 1).σT = 0, it follows that Si = SN .ρi(t), giving a rational
parameterisation in terms of SN . By setting ri(t) = ρi(t)/ρ0(t) (and taking ρN(t) = 1), this
may be rewritten as

Si = S0.ri(t) (12)

for 0 ≤ i ≤ N . This gives Paper Equation 1.
Gaussian elimination over symbolic fields like R(κ, t) is implemented in many computer

algebra systems, including Mathematica, so that explicit parameterisations can be calculated
for a given system.

1.7 Examples
We discuss three examples, of which the first two are used for calculations in the paper and the
third is for purposes of illustration. None of the examples make use of processive phosphoryla-
tion or dephosphorylation, so it will be convenient to use the abbreviation κX

i,j for the catalytic

efficiency associated to a reaction i
X→ j:

κX
i,j =

cX
i,j

KX
i

.
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Example 1. Consider a distributive, sequential system with n sites. In such a system the
kinase phosphorylates distributively in a strict site order and the phosphatase dephosphorylates
distributively in the reverse order. For a substrate with n sites, only n+1 phospho-forms appear
(so that N = n). The phospho-forms must also be re-indexed: let Si denote the phospho-form
with the first i sites phosphorylated in order. The maximally phosphorylated phospho-form is
then Sn. The network of reactions is given by

0
E→ 1, · · · , (n− 1)

E→ n, 1
F→ 0, · · · , n

F→ (n− 1) .

Paper Figure 3a depicts such an example with n = 4.
It will be convenient to introduce a further abbreviation for the ratio of the catalytic effi-

ciency of the kinase to that of the phosphatase. For 0 ≤ i < n, let

λi =
κE

i,i+1

κF
i+1,i

. (13)

The parameterisation for such a sequential system can be calculated by hand, as previously [20]:

ri(t) =

i−1∏
j=0

λj

 ti . (14)

We see that the parameterisation is polynomial with coefficients in R(κ).

Example 2. Now consider a nonsequential system with n sites with only distributive phospho-
rylation and dephosphorylation and let us revert to the indexing scheme in §1.1. Paper Figure 1a
and 1b depict such an example for n = 3. As before, N = 2n − 1. Note that i

E→ j if, and only
if, j

F→ i. Suppose further that κE
i,j = κF

j,i. In this case, although the system is nonsequential
with all 2n phospho-forms, it behaves mathematically as if it were sequential. For 0 ≤ i ≤ N ,
let b(i) denote the size of the set [i], or the number of bits set to 1 in the binary expansion of
i. Let σ be the row vector such that σi = tb(i). It is not difficult to show that Q.σT = 0. This
is quite surprising as, despite the simplifying assumption, the entries of Q are still functions of
the κX

i,j . It follows immediately that
ri(t) = tb(i) (15)

We see that the parameterisation is also polynomial in this case.

Example 3. The simple polynomial parameterisations in (14) and (15) are quite special. Con-
sider a nonsequential system with n = 2 sites with only distributive phosphorylation and de-
phosphorylation. This example is treated in more detail in [27]. The network of reactions is
given by

0
E→ 1, 0

E→ 2, 1
E→ 3, 2

E→ 3, 1
F→ 0, 2

F→ 0, 3
F→ 2, 3

F→ 1 .
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The rational functions ri(t) can be calculated in Mathematica:

r1(t) =
t(κF

3,1 + κF
3,2)κ

E
0,1κ

F
2,0 + t2(κE

0,1 + κE
0,2)κ

E
2,3κ

F
3,1

(κF
3,1 + κF

3,2)κ
F
1,0κ

F
2,0 + t(κE

2,3κ
F
1,0κ

F
3,1 + κE

1,3κ
F
2,0κ

F
3,2)

r2(t) =
t(κF

3,1 + κF
3,2)κ

E
0,2κ

F
1,0 + t2(κE

0,1 + κE
0,2)κ

E
1,3κ

F
3,2

(κF
3,1 + κF

3,2)κ
F
1,0κ

F
2,0 + t(κE

2,3κ
F
1,0κ

F
3,1 + κE

1,3κ
F
2,0κ

F
3,2)

r3(t) =
t2(κE

0,2κ
E
2,3κ

F
1,0 + κE

0,1κ
E
1,3κ

F
2,0) + t3(κE

0,1 + κE
0,2)κ

E
1,3κ

E
2,3

(κF
3,1 + κF

3,2)κ
F
1,0κ

F
2,0 + t(κE

2,3κ
F
1,0κ

F
3,1 + κE

1,3κ
F
2,0κ

F
3,2)

.

(16)

Note the substantial increase in complexity over Examples 1 and 2. All three examples exhibit
certain features which turn out to be general properties. Most significantly, the ri(t) are all
s-positive elements of R(κ, t).

1.8 Positivity of ri(t)

The positivity property states that, for 0 ≤ i < N , ρi(t)—and hence also ri(t)—is s-positive as
a rational function in R(κ, t). From what was said previously, ri(t) is necessarily also s-positive
as a rational function in R(a, t). It follows that, for any positive parameter values and positive
values of t, ri(t) is well defined and positive, as claimed in the paper. The proof requires two
general matrix lemmas.

If M is an r × r matrix over a field K recall that M(i1, · · · , iu; j1, · · · , jv) denotes the u× v
submatrix consisting of the elements in rows i1, · · · , iu and columns j1, · · · , jv. Note that the
row and column sequences do not have to retain their original order. It is convenient to use a
shorthand for certain sequences, in which i1, · · · , ît, · · · , iu, k denotes the sequence in which k
appears in place of the hatted index, it: i1, · · · , ît, · · · , iu, k = i1, · · · , it−1, k, it+1, · · · , iu.

Lemma 2 During Gaussian elimination of M , suppose that none of the pivots on the diagonal
are zero up to and including stage k. Then det M(1, · · · , k; 1, · · · , k) 6= 0 and the entries of
M(k) are given by

M(k)i,j =


det M(1, · · · , k; 1, · · · , î, · · · , k, j)

det M(1, · · · , k; 1, · · · , k)
if 1 ≤ i ≤ k

det M(1, · · · , k, i; 1, · · · , k, j)

det M(1, · · · , k; 1, · · · , k)
if k + 1 ≤ i ≤ r.

This can be proved using standard results in matrix theory. Lemma 1 allows the rational
functions in (11) to be calculated as

ρi−1(t) =
det Q(1, · · · , N ; 1, · · · , î, · · · , N,N + 1)

det Q(1, · · · , N ; 1, · · · , N)
, (17)
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for 1 ≤ i ≤ N . The determinants appearing in (17) are elements of R[κ, t], so that (17) gives an
expression for ρi(t) ∈ R(κ, t) as a fraction.

Let M be a r × r matrix with entries in a polynomial ring like R[κ, t]. We say that M
satisfies property S if it has the same pattern as Q in (10), with diagonal elements s-negative
and non-zero off-diagonal elements s-positive, and, in addition, each column sum,

∑
j Mi,j , is

also s-negative.

Lemma 3 Suppose that M(1, · · · , k; 1, · · · k) satisfies property S for 1 ≤ k ≤ r. Then, det M
is s-positive (respectively, s-negative) according as r is even (respectively, odd).

This is straightforward to prove by induction in the special case that the entries of M are
real numbers. A similar argument can be adapted to the more general case of entries in R[κ, t].
Lemma 3 allows the positivity of the determinants in (17) to be determined. The positivity
property of ri(t) follows immediately.

1.9 The broader perspective
It is helpful to set these results in the context of related theoretical work. We summarise some of
the relevant literature here. Chemical Reaction Network Theory (CRNT) was initiated by Horn
and Jackson [24] and developed in great depth by Feinberg and his students [17]. In its early
manifestations, CRNT introduced the deficiency of a reaction network and showed that networks
with low deficiency could be very complex but were, nevertheless, monostable irrespective of
parameter values (for detailed references, see [17, 19]). Recent results have uncovered more
nuanced graph-theoretic conditions which confirm the existence of a steady state, or rule out the
possibility of multiple steady states [12, 13, 14]. The deficiency of the multisite phosphorylation
network discussed here increases with increasing n and CRNT is not obviously applicable to our
results. Adelman and his students have initiated an axiomatic approach to mass-action kinetics
[1], generalising Horn and Jackson’s early work but with a continued focus on monostability.
Sontag has introduced methods of monotone dynamical systems by which high-dimensional
models can sometimes be reduced to two dimensions [4]. However, these methods rely on
Michaelis-Menten approximations and the underlying mass-action systems, as studied here, are
not monotone.

The dynamical systems arising from mass-action kinetics possess the special property of
being polynomial: their right-hand sides are polynomial functions of the state variables. Poly-
nomial dynamical systems have a long history in mathematics going back to Hilbert’s sixteenth
problem [8]. Of particular interest here is that their steady states form algebraic varieties,
which are the subject matter of algebraic geometry [10]. Equation (12) shows that the steady-
state phospho-forms form a (projective) rational curve [35]. Rational varieties are special [33]
and their appearance here is of considerable mathematical interest. Rationality provides an ex-
plicit way to compute points on a variety, in contrast to their implicit definition as solutions of
polynomial equations. The geometric implications of this are explored in an earlier paper of
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ours for n = 2 sites [27].
Although mass-action kinetics have long been known to give rise to polynomial dynamics

and steady-state varieties, algebraic geometry has not been widely exploited in biological mod-
elling. Computational algebra and Gröbner bases have been previously used to calculate rate
functions in Metabolic Control Analysis [5, 6] and the use of Gröbner bases in the context of re-
action networks has been reviewed in [28]. Algebraic geometry over finite fields has been used
for gene network reconstruction from microarray time-series data [2, 25]. A particularly inter-
esting development has been the use of toric varieties to reinterpret certain results on monosta-
bility in CRNT [11, 18]. Parrilo, Doyle and others have exploited semi-algebraic geometry to
develop “sum-of-squares” techniques and associated software tools for stability determination
and model validation [16, 31]; see also [32]. The collection of papers in [21] exhibits the broad
scope of these control-theoretic methods. While our results have exploited the special structure
of PTM systems and use only linear methods (albeit over extension fields), pushing beyond this
to more complex regulatory mechanisms will require more powerful methods from algebraic
geometry and related mathematical disciplines.

Although unrelated to biological modelling, there has been much interest in using algebraic
geometric methods to analyze discrete statistical models, particularly in phylogeny reconstruc-
tion [30]. This has given rise to the new field of algebraic statistics [29].

2 Exact calculation of steady states using Φ

2.1 Definition of Φ

It follows from (6) and (12) that all 3.2n state variables in the system are determined by just S0,
E and F . We can now calculate the total amounts of substrate, Stot, and enzymes, Etot, Ftot in
terms of S0, E and F . Define the following three rational functions in R(a, t),

φ1(t) =
N∑

i=0

ri(t) , φ2(t) =
N−1∑
i=0

ri(t)

KE
i

, φ3(t) =
N∑

i=1

ri(t)

KF
i

.

Note that φ1, φ2 and φ3 are all s-positive. It follows from (6) that

S0φ1(t) =
N∑

i=0

Si , E.S0φ2(t) =
N−1∑
i=0

ESi , F.S0φ3(t) =
N∑

i=1

FSi .

The total substrate is therefore given by Stot = S0(φ1 + Eφ2 + Fφ3). We can hence define a
2× 2 function, Φ, such that

Φ1(E, F ) = E

(
1 +

Stotφ2

φ1 + Eφ2 + Fφ3

)
= Etot

Φ2(E, F ) = F

(
1 +

Stotφ3

φ1 + Eφ2 + Fφ3

)
= Ftot .

(18)
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This gives two algebraic equations for E, F , as required for Paper Equation 2. We have shown
that the E, F values in any steady state are solutions of (18). Now suppose that (E, F ) is any
solution of (18). Let S0 = Stot/(φ1 + Eφ2 + Fφ3), Si = S0ri(E/F ) and XSi = X.Si/K

X
i

for X = E, F . It is easy to check that this defines a steady state. Hence, (18) characterises the
steady states.

2.2 Numerical solution of Φ

If parameter values are specified and enzyme and substrate totals are chosen, equation (18)
can be solved numerically in Matlab and the steady states determined as in Paper Figure 2.
The parameter values for the sequential example used in Paper Figure 2 are shown in Ta-
ble 1. We do the Matlab calculation as follows. (Further information on Matlab is available
at www.mathworks.com.) We first calculate the values of Φ on a grid in the (E, F ) plane and
use contourc on the output of this to determine the sets of points satisfying Φ1(E, F ) = Etot

(the Etot curve) and Φ2(E, F ) = Ftot (the Ftot curve). Contourc interpolates to find these
“isolines”. They provide the visual plots in which the steady states appear at the intersections
of the curves, as in Paper Figure 2a. For automated searches we use a 120 × 120 grid, where
log10 of each coordinate is equally spaced in [−6, 6]. For manual inspection at finer resolution
we use a 1200 × 1200 grid. We then calculate the steady states via fsolve, which uses an
iterative nonlinear search starting from a specified initial condition. We separately calculate the
derivative of Φ (the Jacobian) and provide that to fsolve to speed up the search.

An appropriate choice of initial conditions is essential for both speed and accuracy. We
found that points lying on either the Etot curve or the Ftot curve provided good initial conditions,
while other points sometimes caused fsolve to diverge or return an error. We used the Etot

curve for the set of initial conditions. We first chose three points on the Etot curve, one each at
either extreme of E/F value and the third in the middle. If, for each of these initial conditions,
fsolve returns a solution and the solutions agree to within a specified tolerance (usually 10−4)
in each coordinate, we return that solution as the unique steady state of the system. If any of
these conditions fails, we take every other point lying on the Etot curve and run fsolve on all
of them. We count the resulting solutions as distinct if they differ by more than the tolerance in
any coordinate. The distinct solutions are returned as the steady states. This protocol was fine-
tuned from numerical experiments to provide a reasonable balance between speed and accuracy,
using the visual plot and the numerical calculation to cross-check each other. It can take up to
30 seconds to find all the steady states for a system with 4 sites but the improvement over
numerical simulation of the differential equations is substantial.

2.3 Stability of steady states
Given a system of ordinary differential equations, dx/dt = f(x), where x ∈ Rm and f : Rm →
Rm, the Jacobian matrix, J , is the m × m matrix defined by Jij = ∂fi/∂xj . According to
standard theory, the stability of a steady state is determined by the eigenvalues of the Jacobian
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evaluated at the state [23]. If all the eigenvalues have negative real part, the state is stable; if not,
it is unstable. We computed the Jacobian symbolically in terms of the parameters aX

i , bX
i , cX

i,j

and the steady-state species concentrations. For a given steady state defined by Stot, E, F , we
computed all the steady-state species concentrations using (6) and (12) and substituted these
values into the symbolic Jacobian along with the parameter values. We then calculated the
eigenvalues using Matlab’s eig function.

In tests of stability we found that if the steady states are ordered by increasing t = E/F ,
unstable states occur between stable ones, just as a hill is found between two valleys. Hence,
if there are 2j + 1 steady states (we found only odd numbers of steady states in all examples
studied), then there are j + 1 stable states.

3 Approximate calculation of steady states using P (t)

3.1 Definition of P (t)

If substrate is in excess over enzymes, so that Stot � Etot and Stot � Ftot, then the total
amounts of enzyme-substrate complexes may be considered negligible in comparison to Stot.
Hence, we may write, approximately,

Stot = [S0] + · · ·+ [SN ] = [S0]φ1(t) . (19)

We can then rewrite the expressions for Etot and Ftot in (18) to get

Etot = E

(
1 + Stot

φ2(t)

φ1(t)

)

Ftot = F

(
1 + Stot

φ3(t)

φ1(t)

)
.

(20)

For given, Etot, Ftot and Stot, the (E, F ) pairs which are solutions of (20) are the steady states
of the system, to within the approximation..

Dividing the first equation by the second, and setting Etot/Ftot = w, we see that

w(φ1(t) + Stotφ3(t)) = t(φ1(t) + Stotφ2(t)) , (21)

and so, rearranging this,

R(t) = (t− w)φ1(t) + Stot(tφ2(t)− wφ3(t)) = 0 . (22)

Since φ1(t), φ2(t) and φ3(t) are rational functions in R(a, t), so too is R(t). Furthermore, since
the φ’s are all s-positive, it is evident that R(t) can be written in the form R(t) = P (t)/Q(t)
where P (t), Q(t) are polynomials in R[a, t] and the denominator, Q(t), is s-positive. (Of course,
this need not be the case for the numerator, P (t).) Accordingly, for positive parameter values
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and positive values of t, R(t) = 0 if, and only if, P (t) = 0. Note the crucial role played by the
positivity property at this point.

If (E, F ) is a solution of the approximate equation (20) then t = E/F is a solution of
P (t) = 0. Now suppose t1 > 0 and P (t1) = 0, so that R(t1) = 0. It follows from (22) that

t1 = w

(
φ1(t1) + Stotφ3(t1)

φ1(t1) + Stotφ2(t1)

)
.

Let

E2 =
Etotφ1(t1)

φ1(t1) + Stotφ2(t1)

F2 =
Ftotφ1(t1)

φ1(t1) + Stotφ3(t1)
.

(23)

Since t1 > 0, and φ1, φ2 and φ3 are s-positive, this can always be done so that E2 and F2 are
positive. Let t2 = E2/F2. Dividing the equations for E2 and F2 in (23), we see that

t2 = w

(
φ1(t1) + Stotφ3(t1)

φ1(t1) + Stotφ2(t1)

)
= t1 .

It follows from (23) that t1 satisfies (20) and is therefore a solution of the approximate system.
Hence, solutions of the approximate system (20) correspond precisely to positive solutions of
P (t) = 0.

3.2 Numerical solution of P (t) = 0

We used Matlab’s roots function, which is fast and accurate. For n up to 12 sites, ∼ 6000
polynomials per second can be solved, giving a substantial improvement over numerical solu-
tion of equation (18).

3.3 Approximation of Φ(E, F ) by P (t)

To assess quantitatively how close P (t) = 0 is to the exact steady state solution provided by
equation (18), we proceeded as follows for the n = 4 distributive, sequential system studied in
the paper. Using the notation from Example 1 in §1.7, we chose KE

i and KF
i randomly from

the uniform distribution on [1, 1000] nM and log10(λi) randomly from the uniform distribution
on [−3, 3]. We set Etot = Ftot and chose log10 Etot and log10 Stot randomly from the uniform
distribution on [0, 4], corresponding to a concentration range of [1− 10000] nM. We generated
10,000 such systems, for which we solved both equation (18) and P (t) = 0 for the steady
states. We found 108 systems for which the number of steady states differed between Φ and
P . We first set those aside but analyze them further below. For the remaining systems, we
calculated E/F for each steady state coming from Φ and listed them in order of increasing
E/F : s1 < s2 < · · · < sk, where k is the number of steady states. (We found k = 1 and k = 3
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only, with no k = 5.) We matched these with the ordered list of positive solutions of P (t) = 0,
a1 < a2 < · · · < ak. We measured the discrepancy between the exact solution coming from
(18) and the approximate solution coming from P (t) = 0 by calculating the average normalized
difference,

σ =
1

k

k∑
i=1

|si − ai|
si

. (24)

Figure 1A shows that for nearly 80% of the randomly chosen systems, the approximation is
good to within σ < 0.1, irrespective of the values of Stot and Etot. Figure 1B shows that the
approximation gets steadily better as Stot/Etot increases from 1. We took Stot/Etot ≥ 5 as our
cut-off. In this range, σ < 0.23.

We then considered the 108 omitted systems for which Φ and P (u) differed in the number of
roots found. A histogram of these is plotted against log10 Stot/Etot on the bottom of Figure 1B.
We found 52 miscounted systems for which Stot/Etot ≥ 5. We examined each of these by
hand and determined, on a conservative basis, that 45 of them were caused by numerical errors
in finding solutions to Φ. That is, when these systems were re-computed with finer tolerances
and a denser set of initial conditions, the number of steady states was found to converge and to
agree with those obtained from solving P (t) = 0. The remaining 7 systems were adjudged to
be possible errors arising from using P (t) = 0 as an approximation for equation (18). Since
there were 3385 systems for which Stot/Etot ≥ 5, this gives a miscounting rate of 0.2%.

3.4 Examples
Equation (22) allows P (t) to be calculated once the rational parameterisation is known. For
both Examples 1 and 2, the ri(t) are polynomials in R[κ, t], so that R(t) = P (t), and P (t) has
degree n + 1. Suppose that P (t) = αn+1t

n+1 + αnt
n + · · ·+ α1t + α0, where αi ∈ R(a).

Example 1. The sequential system. Recall the definition of λi in (13). In this case,

αn+1 = λ0 · · ·λn−1 and α0 = −w

αk = λ0 · · ·λk−2

[
(1− λk−1w) + Stot

(
1

KE
k−1

− λk−1w

KF
k

)]

for 0 < k ≤ n.

(25)

Example 2. The nonsequential system in which κE
i,j = κF

j,i. Recall that b(i) is the number of
bits set to 1 in the binary expansion of i. In this case,

αn+1 = 1 and α0 = −w

αk =

(
n

k − 1

)
− w

(
n

k

)
+ Stot

 ∑
b(i)=k−1

1

KE
i

− w

 ∑
b(i)=k

1

KF
i


for 0 < k ≤ n.

(26)
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3.5 Finding systems with specified steady states
Suppose given a polynomial of degree n + 1, Q(t) = An+1t

n+1 + Ant
n + · · · + A1t + A0,

with Ai ∈ R. We claim that, under suitable conditions on the Ai, we can construct a multisite
phosphorylation system for which P (t) = Q(t). By choosing an appropriate Q, as shown
below, the existence of multiple steady states can be demonstrated. This can be done for both
the sequential system given by equation (25) and the nonsequential system given by (26). The
latter example shows that the existence of multiple steady states is not a special property of
sequential systems.

Example 1. Suppose that Q(t) satisfies An+1 > 0 and A0 < 0. We claim that for Stot > 0
chosen arbitrarily and appropriate choices of w, KX

i and λi, all positive, the corresponding P (t)
polynomial defined by (25) coincides with Q(t).

Note first that the term in square brackets in (25) can be rewritten as(
1 +

Stot

KE
i

)
− λiw

(
1 +

Stot

KF
i+1

)
.

Start by choosing Stot > 0 arbitrarily. Choose w = −A0 > 0. For 0 ≤ i ≤ n− 2, choose KE
i ,

KF
i+1 and λi inductively so that(

1 +
Stot

KE
i

)
− λiw

(
1 +

Stot

KF
i+1

)
=

Ai+1

λ0 · · ·λi−1

= Bi+1

as follows. (When i = 0, the induction starts with A1 = B1 but the argument below is identical.)
If Bi+1 = 0, take λi = 1/w and choose KE

i = KF
i+1 > 0 arbitrarily. If Bi+1 > 0, choose

KE
i > 0 so that (

1 +
Stot

KE
i

)
> Bi+1 ,

which may always be done. Now choose KF
i+1 and λi so that(

1 +
Stot

KE
i

)
−Bi+1 = λiw

(
1 +

Stot

KF
i+1

)
, (27)

which may also always be done. If Bi+1 < 0 then KE
i+1 may be chosen arbitrarily and the left

hand side of (27) will always be positive. Hence, KF
i+1 and λi can always be chosen positive so

that (27) is satisfied.
By following this inductive procedure for 0 ≤ i ≤ n − 2 we will have chosen Stot, w, KE

i

for 0 ≤ i ≤ n − 2, KF
i for 1 ≤ i ≤ n − 1 and λi for 0 ≤ i ≤ n − 2 all positive. With these

choices we will have satisfied (25) for all coefficients Ai such that 0 ≤ i < n. Now consider
the last two coefficients An and An+1. Choose λn−1 = An+1/(λ0 · · ·λn−2) > 0, so that (25) is
satisfied for An+1. Now choose KE

n−1 and KF
n such that

1

KE
n−1

− λn−1w

KF
n

=
1

Stot

(
An

λ0 · · ·λn−2

− (1− λn−1w)

)
= c ,
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as follows. The right hand side consists of terms like An, which are given, or terms that have
been previously determined. Let α = λn−1w > 0. We have to find x, y > 0 such that

x− αy = c .

Since α > 0, this can always be done for any c, thereby satisfying (25) for An. This completes
the proof.

Example 2. Suppose that Q(t) satisfies An+1 = 1 and A0 < 0. We claim that for Stot > 0
chosen arbitrarily and appropriate choices of w and KX

i , all positive, the corresponding P (t)
polynomial defined by (26) coincides with Q(t). The argument is simpler than in the sequential
case and requires no induction.

Choose Stot > 0 arbitrarily and choose w = −A0 > 0. Now choose 1 ≤ k ≤ n. We need to
show, rearranging the formula for αk in (26), that

∑
b(i)=k−1

(
1 +

Stot

KE
i

)
− w

 ∑
b(i)=k

(
1 +

Stot

KF
i

) = Ak , (28)

for suitable choice of KX
i . Consider the function of several variables

µ(u1, · · · , um) =
m∑

i=1

(
1 +

a

ui

)
,

where a > 0. It is easy to see that µ maps the positive orthant of Rm onto the open inter-
val (m,∞). In other words, for any x > m we can find u1, · · · , um, all positive, such that
µ(u1, · · · , um) = x. Applying this, we can choose KF

i with b(i) = k, all positive, such that,

Ak + w

 ∑
b(i)=k

(
1 +

Stot

KF
i

) >

(
n

k − 1

)
.

We can do this no matter what the value of Ak. Applying the µ property again, we can choose
KE

i with b(i) = k − 1, all positive, such that (28) holds. The completes the proof.

We can now construct steady states. If n is odd, and t1, · · · , tn are any n distinct positive
numbers, then (t − t1) · · · (t − tn)(t + 1) is a polynomial of degree n + 1 that satisfies the
conditions required for both Example 1 and 2. Hence, we can find rate constants for either
example for which the corresponding polynomial is P (t) and the system has n steady states at
t = t1, · · · , tn. Similarly, if n is even and t1, · · · , tn+1 are any n + 1 distinct positive numbers,
then (t − t1) · · · (t − tn+1) is a polynomial of degree n + 1 that satisfies the conditions for
both Example 1 and 2. Hence, we can find corresponding systems with n + 1 steady states at
t = t1, · · · , tn+1. Since Stot can be chosen arbitrarily in both examples, we can ensure that the
solutions of P (t) = 0 that have been found approximate as closely as desired to solutions of
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the exact equations given by equation (18). Assuming, on the basis of the findings in §2.3, that
unstable states appear between stable ones we find that, for any n, we can construct sequential
and nonsequential multisite phosphorylation systems for which the number of stable states is
b(n + 2)/2c, as claimed in the paper. Following on from our earlier demonstration of this for
sequential systems [34], Wang and Sontag found rigorous bounds on the number of stable states
[36].

4 Dynamical arguments
The discussion above has centered on algebraic arguments at steady state. To understand how
steady states arise dynamically, other methods are needed.

4.1 Kinetic trapping
The kinetic trapping argument in Paper Figure 3 uses the n = 4 distributive, sequential system
and applies the Michaelis-Menten rate formula. Recall [9] that this approximation is given by

dS1

dt
=

cE
0,1Etot.S0

KE
0 + S0

,

for the production of S1 from S0 by E. A similar formula to this holds for the production of S0

from S1 by F . The shape of the corresponding hyperbolas in Paper Figure 3 can be summarised
in two graphical quantities: the slope of the hyperbola at the origin, given by cE

0,1Etot/K
E
0 , and

the maximal rate or asymptotic value, given by cE
0,1Etot. There are four possible dispositions

of the two curves, depending on the relative values of these two quantities, and the disposition
shown in Paper Figure 3 requires that

cF
1,0Ftot

KF
1

>
cE
0,1Etot

KE
0

and cF
1,0Ftot > cE

0,1Etot .

Recalling that w = Etot/Ftot and the definition of λi in (13), these conditions can be rewritten
as

1− λ0w > 0 and
1

KE
0

− λ0w

KF
1

> 0 . (29)

These are the same expressions that appear in (25), and it follows from (29) that α1 > 0.
Applying the same reasoning to the kinetic trapping condition at the other end of the sequential
chain, we find that αn < 0. The conditions that emerged from the dynamic argument of kinetic
trapping turn out to be sign conditions on the coefficients of P (t).
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4.2 Alternating sign condition leads to increasing multistability
For high multistability, it is necessary for P (t) to have many positive roots. Calculating the
number of real roots of a real polynomial is generally intractable and only probabilistic answers
have been found to this class of questions [7]. For instance, if the coefficients of P (t) are
chosen randomly from the standard normal distribution, then the average number of real roots
(ie: without restriction on the sign) is given by the Kac integral formula, which is approximated
by 2 log(n+1)/π [15]. This may suggest that high multistability, while mathematically possible,
is quite rare. However, the coefficients of P (t) are not independent and evolution may sculpt the
site-specific parameters in ways not yet understood. This leaves open the possibility that some
bias in the coefficients may enrich for multistability. The sign conditions on the coefficients of
P (t) found above suggests how this might work. Recall that Descartes’ Rule of Signs [3] states
that the number of positive solutions of P (t) = 0 is always less than the number of sign changes
in the coefficients of P (t). We exploited this as follows.

For the n = 4 distributive, sequential system with KE
i = KF

i+1, it follows from (25) that
ai is positive if λi < 1/w and negative if λi > 1/w. Note that the example used in the
paper, whose parameter values are given in Table 1, has coefficients with alternating signs for
w = 1. For each even n from 2 to 12 we generated 100,000 systems as follows. We chose
log10(K

X
i in nM) randomly from the uniform distribution on [−1, 2] and log10 λi randomly

from the uniform distribution on [−2, 2]. We set Stot = 1000 nM, forcing the enzymes into
saturation, and Etot = Ftot = 200 nM, ensuring that substrate was in excess and that w = 1.
We found the distribution of steady states in Figure 2A where monostability remains more
likely than multistability up to n = 12 and five steady states do not appear until n = 6. We
then repeated the calculation with log10 λi uniform on [−2, 0] for i even and on [0, 2] for i
odd, thereby forcing the maximum number of sign changes among the coefficients of P (t).
The distribution shifted to that in Figure 2B in which multistability is now more likely than
monostability as soon as n > 2, the frequency of five steady states is increased and becomes
detectable for n = 4.

4.3 Simulation of the differential equations
We used the little b computational infrastructure to generate the differential equations
from which the dynamical information in Paper Figures 2a and 4 was obtained [26]. Little
b is a modular programming language in which models can be specified at a biological level
of description and compiled into Matlab code, which can then be simulated. Programmable
modularity allows us to write a generic multisite phosphorylation module which can construct
the required differential equations for a multisite phosphorylation system having any number
of sites, making it unnecessary to write new Matlab code each time. See [26, §3.2] for more
details of the generic module. Little b is freely available as open source software from
littleb.org and vcp.med.harvard.edu. For the simulations we used Matlab’s ode15s solver
with absolute tolerance of 10−35.
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i = 0 i = 1 i = 2 i = 3

aE
i nM−1sec−1 8.12× 10−3 1.02× 10−1 8.12× 10−3 1.02× 10−1

bE
i nM−1sec−1 1.60× 10−2 2.04× 10−1 1.60× 10−2 2.04× 10−1

cE
i,i+1 sec−1 1.00× 10−1 1.00× 10+1 1.00× 10−1 1.00× 10+1

aF
i+1 nM−1sec−1 1.12× 10−1 2.64× 10−3 6.51× 10−1 2.85× 10−3

bF
i+1 nM−1sec−1 2.24× 10−1 5.00× 10−3 1.30× 10+0 6.00× 10−3

cF
i+1,i sec−1 1.10× 10+1 1.70× 10−2 6.39× 10+1 1.36× 10−1

KE
i nM 1.43× 10+1 1.00× 10+2 1.43× 10+1 1.00× 10+2

KF
i+1 nM 1.00× 10+2 8.33× 10+0 1.00× 10+2 5.00× 10+1

λi 6.38× 10−2 5.05× 10+1 1.01× 10−2 3.67× 10+1

Table 1: Parameter values for the n = 4 distributive, sequential model used in Paper Figure 2,
following the notation for Example 1 in §1.7.
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Figure 1: Approximation of Φ by P (u). 10000 random systems were generated, as described
in the text, and solved using Φ and P (u) = 0. For those which gave the same number of steady
states, the discrepancy between the solutions was measured using σ, as described in the text. A
Histogram of log10 σ values. B The top shows a scatter plot of log10 σ on the left vertical axis
against log10 Stot/Etot. The bottom shows the number of systems which gave different numbers
of steady states for Φ and P (u), using the lower part of the right vertical axis, binned against
log10 Stot/Etot.

Figure 2: Frequency distributions of steady states for randomly chosen systems with n = 2 to
12 sites, as described in the text. A λi is chosen uniformly from site to site. B λi is biased to be
low for even i and high for odd i. Vertical scales show frequency of occurrence of 1 (black), 3
(red) and 5 (blue) steady states, for 100,000 systems for each n.
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